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Abstract. The correlator of two field strengths is computed from an effective action for Yang Mills theories,
which contains both gluons and an auxiliary antisymmetric tensor field for the field strength as local
variables. This action allows to relate explicitly many different approaches to confinement, and is computed
using Wilsonian renormalization group equations with the bare Yang Mills action as starting point. Due
to the inclusion of a higher dimensional operator in the ghost sector the running gauge coupling becomes
vanishingly small at a critical scale kc, and the resulting low energy action resembles the action of a
confining string theory proposed by Polyakov.

1 Introduction

Many different methods have been used in order to char-
acterize the infrared behaviour of Yang Mills theories: the
Wilson loop [1], the infrared behaviour of the gluon prop-
agator [2], the monopole condensate from a dual Higgs
theory [3] and corresponding analytic models [4], a confin-
ing string theory [5] and field strength correlators [6]. The
area law of the Wilson loop has been related to the infrared
behaviour of the gluon propagator in [7], to monopole con-
densates in the dual Higgs theory in [3,4] and to field
strength correlators in [6]. More recently, field strength
correlators have been studied in the dual Higgs theory in
[8] and in the confining string theory in [9].

In the present paper we continue the study of an effec-
tive action for Yang Mills theories, which contains both
gluons and an auxiliary antisymmetric tensor field for the
field strength as local variables [10]. It has the virtue of al-
lowing for an explicit duality transformation of its abelian
projection, and allows thus to relate explicitly a 1/q4 be-
haviour of the gluon propagator to a monopole condensate
in a dual Higgs theory. Moreover, the parameters of this
effective action can be computed from the bare Yang Mills
action by integrating the Wilsonian exact renormalization
group equations. Note that antisymmetric tensor fields
have already appeared frequently in effective descriptions
of the infrared behaviour of Yang Mills theory, motivated,
e.g., by confining string theories [5] and, again, duality
transformations of dual Higgs theories.

The aim of the present paper is twofold: first, in Sect. 2,
we compute the correlator of two field strengths from the
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corresponding effective action. We find indeed an exponen-
tial decrease at large distances, in agreement with results
on the lattice [11], from the dual Higgs model [8] and from
confining strings [9]. Notably we find that the parameters
which characterize the slope of the exponential decrease
are not the ones which parametrize a 1/q4 behaviour of
the gluon propagator.

Second, we reconsider the Wilsonian renormalization
group flow of the parameters of the Yang Mills action in
the infrared regime in Sect. 3. All previous approaches in
this direction [12,13] have been plagued with the appear-
ance of a Landau singularity of the running coupling con-
stant, which did not allow the integration of the renormal-
ization group equations with respect to an infrared cutoff
k2 down to k2 = 0 (unless the running coupling is put
to a finite value at k2 = 0 by hand). By taking a higher
dimensional operator in the effective action (in the ghost
sector) into account, we find that the Landau singularity
is avoided. Moreover, we obtain an effective action in the
deep infrared regime, which corresponds to the one of an
effective abelian theory and resembles the action of a con-
fining string theory [5]. Conclusions and a discussion of
the physical interpretation of this result will be given in
Sect. 4.

2 Effective action
and the field strength correlator

In order to define the effective action with an auxiliary
field for the field strength we start with the Yang Mills
partition function
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e−G(J,χ,χ̄) =
1
N

∫
D(A, c, c̄)

×e−SY M −Sg+J·A+χ̄·c+χ·c̄. (2.1)

Here SY M is the standard Yang Mills action,

SY M =
1
4

∫
d4x F a

µν F a
µν , (2.2)

and Sg is the gauge fixing and ghost part:

Sg =
∫

d4x

[
1
2α

(
∂µAa

µ

)2
+∂µc̄a

(
δac ∂µ + g fabc Ab

µ

)
cc
]
. (2.3)

Next we multiply the right-hand side of (2.1) with

1 =
1

N ′

∫
DH e− 1

4

∫
d4x(F a

µν−Ha
µν)2 . (2.4)

In addition we add a source Ka
µν for the auxiliary field

Ha
µν and obtain

e−G(J,K,χ,χ̄) =
1

NN ′

∫
D(A, H, c, c̄)

×e−S(A,H)−Sg+J·A+K·H+χ̄c+χc̄ (2.5)

with

S(A, H) =
∫

d4x

(
1
2
(
F a

µν

)2
−1

2
F a

µν Ha
µν +

1
4
(
Ha

µν

)2)
. (2.6)

Note that one could perform the Gaussian integral over
H in (2.5) and obtain an equivalent formulation

e−G(J,K,χ,χ̄) =
1
N

∫
D(A, c, c̄)

×e−SY M −Sg+J·A+K·F+K·K+χ̄c+χc̄ (2.7)

The effective action including the auxiliary field H is de-
fined through the Legendre transform

Γ (A, H, c, c̄) = G(J, K, χ, χ̄)

+J · A + K · H + χ̄ · c + χ · c̄. (2.8)

A general effective action contains an infinite number of
terms with arbitrary powers in the fields and derivatives,
which are just restricted by the need to satisfy the Slav-
nov-Taylor identities.

Let us now consider an expansion of the Aa
µ and Ha

µν

dependent part of Γ in powers of fields and derivatives:

Γ (A, H) =
Z

4
(Fµν)2 − n

2
Fµν Hµν

+
m2

4
(Hµν)2 +

h

2

(
DµH̃µν

)2
+

β

2
(Dµ Hµν)2

+
1
2α

(∂µ Aµ)2 + . . . (2.9)

Here H̃a
µν is defined by H̃a

µν = 1
2εµνρσ Ha

ρσ, and the co-
variant derivative Dµ, acting on fields ϕa in the adjoint
representation of the gauge group, by

Dµϕa = ∂µϕa + ḡ fabc Ab
µ ϕc. (2.10)

In this approximation Γ (A, H) thus depends on 7 param-
eters Z, n, m, h, β, ḡ and α, which have to be computed
within some non-perturbative scheme. In the next section
we will discuss the Wilsonian exact renormalization group
approach, but here we proceed by discussing several im-
portant properties of Γ (A, H).

First, the “reduced” gauge coupling ḡ appearing in the
covariant derivative (2.10) and in the non-abelian part of
the field strength F a

µν has no direct physical meaning. In
order to define a physical gauge coupling one first has to
eliminate Ha

µν from (2.9) by its equations of motion. One
obtains

Γ (A) =
Zeff

4
(Fµν)2 + . . . (2.11)

where the dots denote terms of higher order in the covari-
ant derivatives which are induced by the terms ∼ h, β.
Zeff in (2.11) is given by

Zeff = Z − n2

m2 . (2.12)

A physical gauge coupling (independent of field redefini-
tions of Aa

µ) is now given by

gphys = ḡ/
√

Zeff . (2.13)

Next we study the two point functions (in momentum
space) of the fields Aa

µ and Ha
µν , as obtained from the

effective action (2.9) in the Landau gauge α → 0. One
finds

(
δ2Γ

δϕi(−p)δϕj(p)

)−1

Aa
µ,Ab

ν

= δab

(
δµν − pµpν

p2

)
· PA(p2),

PA(p2) =
p2β + m2

p2(Zm2 − n2)+Zβp4, (2.14a)

(
δ2Γ

δϕi(−p)δϕj(p)

)−1

Aa
µ,Hb

ρσ

= −iδab (pρδµσ − pσδµρ)

·PAH(p2) (2.14b)

PAH(p2) =
n

p2(Zm2 − n2) + Zβp4 ,
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(
δ2Γ

δϕi(−p)δϕj(p)

)−1

Ha
ρσ,Hb

κλ

= δab (δρκδσλ − δρλδσκ)

×PHH,1(p2) + δab (δρκpσpλ

−δρλpσpκ+δσλpρpκ

−δσκ pρ pλ)PHH,2(p2),

PHH,1(p2) =
1

hp2 + m2 (2.14c)

PHH,2(p2) =
Z(h − β)p2 + n2

(hp2 + m2) (p2 (Zm2 − n2) + Zβp4)
.

Let us first check the gluon propagator PA in the case
where Γ (A, H) of (2.9) corresponds to the classical action
S(A, H) of (2.6). After rescaling H → ΛH in (2.6) in
order to give it the appropriate dimension of a bosonic field
(with Λ equal to, e.g., an UV cutoff) this choice of Γ (A, H)
corresponds to the following choice of its parameters Z,
n, m, h, β and ḡ:

Z = 2,

n = m = Λ,

h = β = 0,

ḡ = g0. (2.15)

Then one finds that PA(p2) is given by 1/p2 (and Zeff by
1) as it should be.

On the other hand, PA(p2) enjoys a remarkable prop-
erty if the three parameters Z, n and m are related such
that

Zeff = Z − n2

m2 → 0. (2.16)

Then the gluon propagator PA(p2) becomes

PA(p2) =
p2 + Λ2

c

Zp4 , Λ2
c =

m2

β
, (2.17)

i.e. for p2 << Λ2
c the gluon propagator behaves like 1/p4.

In [10] we have emphasized that at the same time when
(2.16) is satisfied, the abelian projection of the action (2.9)
allows for an explicit duality transformation, where the
dual action corresponds to the one of an abelian Higgs
model in the broken phase. The abelian projection corre-
sponds simply to a vanishing of the reduced gauge cou-
pling ḡ. (In this case the effective action would be invari-
ant under a new gauge symmetry of the form δAa

µ = Λa
µ,

δHa
µν = ∂[µAa

ν], were it not for the “gauge fixing term”
β/2(∂µHµν)2 in (2.9).)

The fields appearing in the dual action are a dual
abelian gauge field Bµ, a Goldstone boson ϕ and a free
massless scalar χ (whose origin can be traced back to the
“gauge fixing term” ∼ β). The duality transformation is
given by

√
ZFB

µν = Z F̃µν − nH̃µν ,

∂νϕ − nBν/
√

Zh =
√

h ∂µ H̃µν ,

∂ν χ =
√

β ∂µ Hµν . (2.18)

Assuming the relation (2.16), the dual action Γ̃ becomes

Γ̃ (B, ϕ) =
1
4
(
FB

µν

)2
+

1
2

(∂µϕ − m̃Bµ)2 +
1
2

(∂µχ)2 . (2.19)

The mass m̃ of the dual gauge field is given by

m̃2 =
n2

Zh
=

m2

h
(2.20)

where we assumed again (2.16) to hold.
Now we turn from previously published results to a

new quantity of interest, the correlator of two field stren-
gths F a

µν . Due to the presence of a source Ka
µν for the

field strength in the form (2.7) for the partition function
this correlator can simply be expressed in terms of the
functional G:

〈F a
µν(x) F b

ρσ(0)〉 =
[−δab (δµρ δνσ − δµσ δνρ) δ4(x)

+
δG

δKa
µν(x)

δG

δKb
ρσ(0)

(2.21)

− δ2G

δKa
µν(x) δKb

ρσ(0)

]
K=J=0

.

(Here we have omitted the Schwinger strings, which we
assume not to significantly affect its x dependence.)

After the Legendre transform (2.8) the correlator be-
comes in terms of the effective action Γ

〈F a
µν(x)F b

ρσ(0)〉 =
[−δab (δµρδνσ − δµσδνρ) δ4(x)

+Ha
µν(x)Hb

ρσ(0)

+
(

δ2Γ

δϕiδϕj

)−1

Ha
µν(x)Hb

ρσ(0)

]
δΓ

δHa
µν

= δΓ
δAa

µ
=0

(2.22)

Assuming no vevs of the fields Ha
µν and Aa

µ,

Ha
µν = Aa

µ = 0 for
δΓ

δHa
µν

=
δΓ

δAa
µ

= 0, (2.23)

the correlator is thus given by the Fourier transforms of
the propagators given in (2.14c). Conventionally [6,8,11]
the correlator is decomposed into two Lorentz invariant
functions D(x2) and D1(x2):

〈F a
µν(x) F b

ρσ(0)〉 =
[

− δab (δµρ δνσ − δµσ δνρ) D(x2)

+
1
2

(
∂

∂xµ
(xρ δνσ − xσ δνρ)

+
∂

∂xν
(xσ δµρ − xρ δµσ)

)
D1(x2)

]
(2.24)

After taking the rescaling of H by Λ into account, our
expressions for the functions D(x2) and D1(x2) become
after comparing (2.24) with (2.14c):

D(x2) = Λ2
∫

d4p

(2π)4
eipxPHH,1(p2) − δ4(x),

D1(x2) = −4Λ2 d

dx2

∫
d4p

(2π)4
eipxPHH,2(p2) (2.25)
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with PHH,1 and PHH,2 as in (2.14c). Both functions D(x2)
and D1(x2) have been measured on the lattice [11], and
at least D(x2) is well fitted by a decaying exponential

D(x2) ∼ e−M |x| , M ∼ 1 GeV , (2.26)

for |x| . 1 fm.
Subsequently we concentrate on the function D(x2),

whose non-vanishing is known to be responsible for the
area law of the Wilson loop, if the cluster expansion con-
verges [6]. Note that in our case, if Γ would correspond
to the classical action S and hence h = 0, m2 = Λ2, the
propagator PHH,1 is simply 1/Λ2 and thus D(x2) van-
ishes, since two δ-functions cancel each other in (2.25).
For a general action (2.9) D(x2) is easily evaluated and
one finds, for |x| 6= 0,

D(x2) =
mΛ2

4π2h3/2|x|K1

(
xm√

h

)
(2.27)

where K1 is a Bessel function. Thus one obtains indeed
an exponential decay (modulo powers) as in (2.26), with

M =
m√
h

. (2.28)

The result (2.27) agrees with the one obtained in [8] on
the basis of a dual Abelian Higgs model, and in [9] from a
confining string theory. In all cases the inverse exponential
decay length M , (2.28), coincides with the mass m̃ of the
dual gauge field, cf. the second equality in (2.20).

Since our effective action (2.9) contains also the gluon
field we can investigate, in how far the behaviour of D(x2)
is related to the gluon propagator. Surprisingly there is
no direct relation: a 1/p4 behaviour of the gluon propa-
gator as in (2.17) depends crucially on the relation (2.16)
to hold, i.e. on a relation between the parameters Z, n,
and m. On the other hand, the result (2.27) does not at
all depend on a relation like (2.16). Even if this relation
holds, the parameter M in (2.28) is not directly related
to the parameter Λc characterizing the 1/p4 behaviour of
the gluon propagator, unless the parameters h and β in
the effective action (2.9) happen to be close to each other.
(Actually, the function D1(x2) does depend on the param-
eters Z, n and m. However, present lattice data [11] do
not yet allow to study this function in detail.) Thus we
see that the different pictures of confinement – based on
the gluon propagator or on the field strength correlator –
are not directly related.

Of course it can be argued that the result (2.27) is only
a trivial consequence of our ansatz (2.9) for the effective
action, whose parameters should eventually be computed
from the Yang Mills Lagrangian. Note, however, that the
action (2.9) implies the result (2.27) only if the parameters
h and m2 turn out to be non-zero, finite and positive.
The result of computation of the parameters of the action
within the context of the Wilsonian exact renormalization
group approach will be presented in the next section.

3 An infrared fixed point
of exact renormalization group equations
for Yang Mills theories

In the recent years much progress has been made in ap-
plying exact renormalization group equations [14] to gauge
theories [12,13,15–17]. Also sources coupled to composite
fields can be introduced in this formalism [18] which allows
to apply it to the present case.

The exact renormalization group approach requires the
introduction of an “artificial” infrared cutoff k into the
partition function (2.1). Then one exploits the facts that
the corresponding k dependent effective action Γk becomes
equal to the classical action S in the limit k → ∞ (up
to additional terms determined by the modified Slavnov-
Taylor identities [15,16]), and that an exact functional dif-
ferential equation fixing the k dependence of Γk can be
derived. Integrating this Wilsonian exact renormalization
group equation from some large value k = Λ down to
k = 0 provides us with the physical effective action Γk=0
in terms of the parameters of some “high energy” effec-
tive action ΓΛ. By construction no ultraviolet invergences
appear in this approach, if both Λ and ΓΛ are assumed to
be finite.

To be concrete, in the present case with a source K
coupled to the field strength F , one defines the functional
Gk(J, K, χ, χ̄) including the infrared cutoff k by a corre-
sponding modification of (2.7):

e−Gk(J,K,χ,χ̄) =
1
N

∫
D(A, c, c̄)

×e−SY M −Sg−∆Sk+J·A+K·F+K·K+χ̄·c+χ·c̄ (3.1)

where ∆Sk implements the infrared cutoff for the gauge
and ghost fields:

∆Sk =
∫

d4p

(2π)4

[
1
2
Aa

µ(−p) Rk
µν(p2) Aa

ν(p)

+c̄a(−p) Rk
g(p2)ca(p)

]
. (3.2)

The functions Rk
µν and Rk

g modify the gauge and ghost
propagators such that modes with p2 << k2 are sup-
pressed. Convenient choices are

Rk
µν(p2) =

(
p2δµν +

(
1
α

− 1
)

pµpν

)
e−p2/k2

1 − e−p2/k2 ,

Rk
g(p2) = p2 e−p2/k2

1 − e−p2/k2 . (3.3)

The effective action in the presence of the infrared cutoff
k is again defined through the Legendre transform

Γ̃k(A, H, c, c̄) = Gk(J, K, χ, χ̄)
+J · A + K · H + χ̄ · c+χ · c̄. (3.4)

Some expressions become more handsome when written in
terms of Γk which is given by Γ̃k with the infrared cutoff
term ∆Sk subtracted:

Γk(A, H, c, c̄) = Γ̃k(A, H, c, c̄) − ∆Sk. (3.5)
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From the path integral (3.1) and the Legendre transform
(3.2) it is straightforward to derive the exact renormaliza-
tion group equations [12–18]

∂kΓk =
1
2

∫
d4p

(2π)4
∂k Rk(p2)ij

×
(

δ2Γ̃k

δϕ̄`(−p) δϕm(p)

)−1

ji

. (3.6)

Here the fields ϕi ≡ (Aa
µ, Ha

µν , ca, c̄a) denote all possible
fields appearing as arguments of Γk or Γ̃k, and the index
i corresponds to the field type and Lorentz and gauge
group indices. The matrix Rk

ij has non-vanishing matrix
elements only in the subsectors (Aa

µ, Aa
ν) and (c̄a, ca). The

inverse functional (δ2Γ̃k/δϕ̄`δϕ̄m)−1
ji , however, has to be

constructed on the complete space spanned by (Aµ, Hµν , c,
c̄) including the auxiliary field Hµν .

The right-hand side of (3.6) corresponds to a one loop
diagram with an arbitrary number of vertices or external
lines, and an insertion of ∂kRk

µν or ∂kRk
g into a gauge field

or ghost propagator. The vertices and propagators have to
be derived from the k dependent effective action Γ̃k. For
a given parametrization of Γk (or Γ̃k), non-linear differen-
tial equations for the k dependence of the corresponding
parameters are obtained from (3.6) by comparing equal
powers of fields and/or derivatives acting on the fields on
both sides.

Now we turn to a parametrization of the Aµ and Hµν

dependent part of Γk in the form of (2.9), where from
now on the parameters Z, n, m, h and β depend on the
infrared cutoff k. Differential equations describing the k
dependence of these parameters are obtained from (3.6)
by considering terms quadratic in Aµ or Hµν , and they
have been derived in the Landau gauge in [10].

On the right-hand side of these differential equations
appears the “reduced” gauge coupling ḡ, since all vertices
(either from the non-abelian part of F a

µν or from the co-
variant derivatives Dµ) are proportional to ḡ. Thus the
renormalization group equation describing the k depen-
dence of ḡ is also needed.

In principle this renormalization group equation could
be obtained from the three gluon vertex or the terms tri-
linear in Aµ in (3.6), but due to the large number of con-
tributing diagrams it is much more convenient to intro-
duce the ghost sector and to consider the relations implied
by the Slavnov-Taylor identities.

The simplest non-trivial parametrization of the ghost
sector of Γk is given by

Γ ghost
k = Zg∂µc̄Dµc

≡ Zg∂µc̄a∂µca

+Zg ḡfabc∂µc̄aAb
µcc. (3.7)

Note that the Slavnov-Taylor identities imply that the re-
duced coupling ḡ in (3.7) equals the coupling ḡ implicit
in (2.9). (Here we neglect modifications of the Slavnov-
Taylor identities for k 6= 0 [15,16] which vanish for k → 0).

Furthermore the ghost-gluon coupling receives no quan-
tum corrections in the Landau gauge. In terms of the exact
renormalization group equations this implies ∂k(Zg ḡ) = 0
or

ḡ−1 ∂k ḡ = −Z−1
g ∂k Zg . (3.8)

Thus the k dependence of ḡ can be obtained from the
k dependence of the ghost wave function normalization
Zg, which is much easier to compute. Within the present
parametrization of Γk the corresponding exact renormal-
ization group equation has also been given in [10], hence a
closed set of differential equations describing the k depen-
dence of the 6 parameters Z, n, m, h, β and ḡ has been
obtained. They have been integrated numerically, with
boundary conditions such that at k = Λ Γk(A, H, c, c̄)
corresponds to the classical action (cf. (2.15)):

Z(Λ) = 2 , n(Λ) = m(Λ) = Λ,

h(Λ) = β(Λ) = 0 , ḡ(Λ) = g0,

Zg(Λ) = 1. (3.9)

As a result of the renormalization group flow we found
indeed that for small k Zeff (k) (defined in terms of Z,
n and m in (2.12) and (2.16)) vanishes. However, it was
not possible to reach k = 0, since a Landau singularity
appeared in ḡ(k) at some small, but finite value of k = kc:
within the present approximation of Γk the right-hand
side of the equation for ∂kḡ(k) is negative definite and
proportional to ḡ2 (as in the case of one loop β function
for Yang Mills theories), thus a Landau singularity cannot
be avoided. Clearly, this is an artifact of the neglect of the
contributions of higher dimensional operators to the right-
hand side of the exact renormalization group equations.

Let us now go beyond the previous simple truncation
of Γk and consider the effects of such higher dimensional
operators. Since the running of ḡ(k) is governed by the
running of Zg(k), cf. (3.8), we have to consider such contri-
butions to the right-hand side of the equation for ∂kZg(k).
First, operators with the same powers of fields as in (3.7),
but involving higher derivatives, will not solve the prob-
lem: these have already been considered in the second of
[13], and they do not modify the negative definiteness of
∂kḡ(k) (or the positive definiteness of ∂kZg(k), implying
Zg(kc) = 0 with kc finite).

Thus we proceed by adding an operator of higher pow-
ers in the fields to the ghost sector of Γk, which will con-
tribute to the running of Zg(k). We replace Γ ghost

k of (3.7)
by

Γ ghost
k = Zg ∂µ c̄ Dµ c + λ ∂µ c̄ Dµ (c Fνρ Fνρ)

≡ Zg ∂µ c̄a ∂µ ca + Zg ḡ fabc ∂µc̄a Ab
µ cc

+λ ∂µ c̄a ∂µ

(
ca F d

νρ F d
νρ

)
+λ ḡ fabc ∂µc̄a Ab

µ cc F d
νρ F d

νρ. (3.10)

The action of the covariant derivative Dµ in the term ∼ λ
in (3.10) has been chosen such that the Slavnov-Taylor
identities are still satisfied in a simple way: technically
speaking, since the variation of Γ ghost

k with respect to ∂µc̄a

is still proportional to a total covariant derivative, the
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Fig. 1. Diagrams contributing to the renormalization group
flow ∂kZg. Straight lines correspond to ghost propagators,
twiggled lines to gluon propagators, and the crossed circle de-
notes an insertion of ∂kR̃ with R̃ as in (3.12)

effective BRST variation of the gluon field Aa
µ is still a

total covariant derivative as before.
In principle, also a term quartic in the ghost fields

could have been added to Γ ghost
k . However, the corre-

sponding contribution to ∂kZg involves only a diagram
with an internal ghost propagator. This contribution is
relatively small compared to the contribution obtained
below in the limit where the gluon propagator becomes
infrared singular, cf. our results below.

After inserting Γ ghost
k of (3.10) into the exact renor-

malization group equation (3.6) and expanding the right-
hand side to the order ∂µc̄ ∂µc one obtains the contri-
butions to ∂kZg which are shown diagrammatically in
Fig. 1. The “tadpole” diagram involving a ghost-ghost-
gluon-gluon vertex is proportional to the coupling λ in
(3.10).

A priori a huge number of diagrams contribute to the
running of ∂kλ, alone 15 to the order λ0. Since we are not
(yet) interested in precise quantitative results, but rather
in the essential features of the system of differential equa-
tions, we will only take the leading contributions into ac-
count: to the orders λ1 and λ2 (no higher orders in λ
exist) we consider only those diagrams, which are leading
in the case of an infrared singular gluon propagator, i.e.
for Zeff → 0.

Instead of including all the contributions to ∂kλ to the
order λ0, we will imitate these contributions by a small,
but non-vanishing value of λ at the starting point k = Λ.
This procedure is justified, since one finds that for k → 0
λ becomes extremely large, and all contributions ∼ λ0 to
∂kλ become relatively negligeable. Also we have verified
that the numerical results for k → 0 are practically in-
dependent of the starting point value of λ provided it is
small enough. This is just a manifestation of universal-
ity of the Wilsonian exact renormalization group flow, i.e.
generally the results for k → 0 depend only very weakly on
the irrelevant couplings in Γk at the starting point k = Λ.
Hence the diagrams which contribute to ∂kλ are finally
just those shown in Fig. 2, which are of the orders λ1 and
λ2.

Fig. 2. Diagrams contributing to the renormalization group
flow ∂kλ

In order to write down the resulting exact renormaliza-
tion group equations for ∂kZg and ∂kλ we use the following
notations: we need the gluon propagator function PA(p2)
of (2.14a), and in addition the ghost propagator PG(p2)
given by

PG(p2) =
1

Zgp2 . (3.11)

The presence of the infrared cutoff requires the replace-
ment of Z by Z + R̃ in (2.14a), and of Zg by Zg + R̃ in
(3.11), with

R̃ =
e−p2/k2

1 − e−p2/k2 (3.12)

for the choices in (3.3). g0 denotes the bare gauge coupling
(appearing at the ghost gluon vertex), and, following the
discussions below (3.7) the coupling ḡ equals g0/Zg. For a
SU(N) gauge group we then obtain from Figs. 1 and 2:

∂kZg =
∫

q2dq2

16π2 ∂kR̃(q2)
[
3Ng2

0

4
q2 (P 2

A PG + PA P 2
G

)
−12N λ q4 P 2

A

]
, (3.13)

∂kλ =
∫

q2dq2

16π2 ∂k R̃(q2)

×
[
−9Nḡ2

2
λ Z2 q4 P 4

A

+4λ2 q6 P 2
A PG

]
. (3.14)

The presence of the term ∼ λ in Γ ghost
k in (3.10) affects

also the exact renormalization group equation for ∂kZ,
but not the equations of the remaining parameters n, m,
h and β. For completeness we present these five equa-
tions below. Their right-hand sides receive contributions
from the vertices from the non-abelian parts of F a

µν , i.e.
from the first two terms in Γ (A, H) of (2.9), and from
the vertices due to the non-abelian parts of the covariant
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derivatives acting on H̃a
µν or Ha

µν , which are thus propor-
tional to h or β. (These latter contributions are not very
important numerically.)

Below PA, PAH etc. denote the propagator functions
of (2.14), with the replacements of Z by Z + R̃ as be-
low (3.11). Because of the required development in pow-
ers of derivatives (or external momenta) the quantities
p2dPA/dp2 etc. appear frequently, and we define for con-
venience

P ′ ≡ p2 dP

dp2 , P ′′ = p4 d2P

(dp2)2
(3.15)

for all propagator functions PA, PAH etc. With ∂k ≡
k2d/dk2 and for a SU(N) gauge group the five exact renor-
malization group equations are

∂k Z =
Nḡ2

16π2

∫ ∞

0
dp2 p4 ∂k Rk

×
[
Z2
(

31
6

P 3
A + 3P 2

AP ′
A + P 2

AP ′′
A

)
−nZPA

(16
3

PAPAH +
8
3
PAHP ′

A

+PAHP ′′
A +

10
3

PAP ′
AH + PAP ′′

AH

)
+n2

(
PA PAH

(
3
2
P ′

AH +
1
2
P ′′

AH

)
+P 2

AH

(
5
12

PA +
7
12

P ′
A +

1
4
P ′′

A

)
+P 2

A

(
p−2

(
9
4
P ′

HH,1 +
13
12

P ′′
HH,1

)
+

3
4
PHH,2 +

11
12

P ′
HH,2 +

1
4
P ′′

HH,2

))
+ZβPAPAHp2 (8PAH + 8P ′

AH + 2P ′′
AH)

+nβ
(
P 2

AHp2
(

2PAH − 11
3

P ′
AH − P ′′

AH

)
−PAPAH

(
6P ′

HH,1 +
8
3
P ′′

HH,1

)
−PAPAHp2

(
3PHH,2 +

13
3

P ′
HH,2 + P ′′

HH,2

))
+β2(P 2

AHp2
(

PHH,1 +
29
6

P ′
HH,1 +

11
6

P ′′
HH,1

)
+P 2

AHp4
(

13
3

PHH,2 + 5P ′
HH,2 + P ′′

HH,2

))
+nhPAPAH

(
5P ′

HH,1 +
5
3
P ′′

HH,1

)
+h2P 2

AHp2
(

PHH,1 +
19
6

P ′
HH,1 +

5
6
P ′′

HH,1

)
+βhP 2

AHp2
(

5P ′
HH,1 − 5

3
P ′′

HH,1

)
+

1
6
Z2

g P 3
g

]
, (3.16a)

∂k n =
Nḡ2

16π2

∫ ∞

0
dp2 p4 ∂k Rk

×
[

n P 2
A

(
5
2
Z PA − 3

2
n PAH

)
+nβPA

(
6p2P 2

AH + 3PAPHH,1 +
3
2
p2PAPHH,2

)
−nhP 2

A

(
3
2
PHH,1 + P ′

HH,1

)
− 8Zβp2P 2

APAH

−β2PAHp2
(

9
2
PAPHH,1 + 3p2P 2

AH

+3p2PAPHH,2
)

−h2p2PAPAH

(
3
2
PHH,1 + P ′

HH,1

)
+βhp2PAPAH

(
3PHH,1 + P ′

HH,1
) ]

, (3.16b)

∂k m2 =
Nḡ2

16π2

∫ ∞

0
dp2 p4 ∂k Rk

×
[
n2P 3

A − 4βnp2P 2
APAH − 3(β + h)P 2

A

+β2PA

(
2p4PAP 2

AH + p2PAPHH,1 + p4PAPHH,2
)

+h2p2P 2
APHH,1

]
, (3.16c)

∂k Zg =
Nḡ2

16π2

∫ ∞

0
dp2 p4 ∂k Rk

×Z2
g PA Pg

3
4

(PA + Pg) , (3.16d)

∂k h =
Nḡ2

16π2

∫ ∞

0
dp2 p4 ∂k Rk

×
[

n2 P 2
A p−2

(
1
6
PA +

4
3
P ′

A +
2
3
P ′′

A

)
+βn

(
− P 2

A

(
10
3

PAH +
16
3

P ′
AH +

4
3
P ′′

AH

)
−PAPAH

(
8
3
P ′

A +
4
3
P ′′

A

))
+hnPA (2PAPAH + 2PAP ′AH − 2P ′

APAH)

+β2
(
P 2

A

(
3
2
PHH,1 +

8
3
P ′

HH,1 +
2
3
P ′′

HH,1

)
+P 2

AHp2
(

5
3
PA +

4
3
P ′

A +
2
3
P ′′

A

)
+PAPAHp2

(
8
3
P ′

AH +
2
3
P ′′

AH

)
+P 2

Ap2
(

25
6

PHH,2 + 4P ′
HH,2 +

2
3
P ′′

HH,2

))
+h2P 2

A

(
9
2
PHH,1 +

4
3
P ′

HH,1

+
1
3
P ′′

HH,1 +
3
2
p2PHH,2

)
+βh

(
− P 2

A

(
3PHH,1 + 2P ′

HH,1

)
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+P 2
AHp2

(
PA + 2P ′

A

)
−P 2

Ap2
(
5PHH,2 + 2P ′

HH,2

))]
, (3.16e)

∂k β =
Nḡ2

16π2

∫ ∞

0
dp2 p4 ∂k Rk

×
[

n2 P 2
Ap−2

(
1
12

PA +
2
3
P ′

A +
1
3
P ′′

A

)
+βn

(
− P 2

A

(
14
3

PAH +
8
3
P ′

AH +
2
3
P ′′

AH

)
−PAPAH

(
4
3
P ′

A +
2
3
P ′′

A

))
+β2

(
P 2

A

(
9
2
PHH,1 +

4
3
P ′

HH,1 +
1
3
P ′′

HH,1

)
+P 2

AHp2
(

16
3

PA +
2
3
P ′

A +
1
3
P ′′

A

)
+P 2

Ap2
(

13
3

PHH,2 + 2P ′
HH,2 +

1
3
P ′′

HH,2

)
+PAPAHp2

(
4
3
P ′

AH +
1
3
P ′′

AH

))
+h2P 2

A

(
3
2
PHH,1 +

8
3
P ′

HH,1 +
2
3
P ′′

HH,1

)
−βhP 2

A

(
3PHH,1 + 2P ′

HH,1
) ]

. (3.16f)

Note that all integrals are trivially ultraviolet finite since,
with the present choice of R̃, ∂kR̃ decreases exponentially
for large p2, and infrared finiteness is ensured by the pres-
ence of the infrared cutoff terms in the propagators. The
integrals in (3.16), and hence the integration of the exact
renormalization group equations for all parameters Z, n,
m, h, β, Zg and λ have to be performed numerically.

It has already been verified in [10] that near the start-
ing point k = Λ, with the parameters as in (3.9), the cor-
rect one loop β functions are obtained. Thus both Zeff as
defined in (2.12) and Zg decrease for decreasing k, i.e. the
reduced coupling ḡ = g0/Zg increases. Also λ increases for
decreasing k, because the first term on the right-hand side
of (3.13) dominates.

This trend continues for some orders of magnitude
of decreasing k, during which Zeff becomes extremely
small. Then, at some critical scale kc, a violent transi-
tion occurs, which is entirely governed by the two renor-
malization group equations (3.13) and (3.14). (It is well
known that coupled non-linear differential equations can
lead to quasi-singular solutions.) First, the right-hand side
of (3.13) turns negative, since λ continued to increase. As
a consequence Zg increases for decreasing k, i.e. the re-
duced coupling ḡ decreases. This decrease is very rapid;
nearly instantly ḡ drops to a value very close to 0. At some
stage during this decrease, however, the second term on
the right-hand side of (3.14) starts to dominate. From this
point onwards also λ decreases for decreasing k.

Soon thereafter all evolution comes practically to an
end, since all right-hand sides of the renormalization group
equations become numerically tiny: the first terms are pro-
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Fig. 4. `n(ḡ) versus t = −log(k2/Λ2)

portional to 1/Zg with Zg extremely large (remember that
both ḡ and PG behave like 1/Zg), and the second terms
are suppressed by a power of λk4 for k → 0.

In Figs. 3, 4 and 5 we show our results, obtained nu-
merically with ḡ(Λ) = g0 = 1.2 and λ(Λ) = 0.01, for
Zeff (k), ḡ(k) = g0/Zg(k) and λ(k) respectively. First, in
Fig. 3, we plot log(Zeff ) versus t = −log(k2/Λ2). The
evolution is from left to right: for k2 = Λ2 t is zero, and t
increases for decreasing k. One recognizes the decrease of
Zeff up to k = kc ; for k below kc (or t above tc) the evolu-
tion of Zeff stops: the right-hand side of all renormaliza-
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tion group equations of Z, n, m, h and β are proportional
to ḡ2, and for t > tc ḡ2 is vanishingly small.

This behaviour of ḡ is shown in Fig. 4, where we plot
log(ḡ) versus t. First, as described above, ḡ increases un-
til it becomes nearly singular. Then, at k = kc, it drops
instantly to a tiny value and remains there subsequently.

In Fig. 5 we plot log(λ) versus t. One observes its
steady increase, its maximum at k = kc and its subse-
quent drop to a somewhat smaller value.

We have checked the independence of our result on
the initial values of ḡ and λ at the starting point k = Λ:
we have varied ḡ(Λ) = g0 between 1.0 and 1.5, and λ(Λ)
between 0.1 and 0.001 and obtained always qualitatively
the same behaviour of ḡ, λ and the other parameters, just
the scale kc varies correspondingly.

We have not been able to describe the quasi-singular
behaviour of ḡ and λ around the critical scale analyt-
ically. However, this behaviour becomes already appar-
ent within a simplified toy model: it is possible to es-
timate the momentum integrals on the right-hand sides
of (3.13) and (3.14), where the main contributions come
from q2 ∼ k2 · (−log(Zeff )). Then these equations can ap-
proximately be written in terms of Zeff , λ and Zg (with
ḡ ∼ 1/Zg, PG ∼ 1/q2Zg) as follows:

∂k Zg =
c1

Zeff Zg
− c2 λ k4

Zeff
,

∂k λ =
c3 λ2 k4

Zeff Zg
− c4 λ

Zeff Z2
g

(3.17)

with c1 . . . c4 of O(1). Already for constant Zeff (note
that Zeff varies only weakly around kc) the solutions for
Zg and λ of the simplified system (3.17) of coupled non-
linear differential equations have the same properties as
the ones shown in Figs. 4 and 5. This constitutes an in-
dependent check of our previous numerical results, and
shows also that the qualitative features are independent
of additional small contributions from neglected diagrams,
i.e. the precise values of the constants c1 . . . c4.

We can also insert the numerical values for Zeff , Zg,
λ and k for k < kc into the right-hand sides of the (3.17)
and find that for all parameters P = {Zg, λ} we have

k2

P

dP

dk2 < 10−10. (3.18)

The same relation holds for all the other parameters P =
{Z, n, m, h, β} for k < kc ; this explains, why there is no
visible evolution in this regime.

Strictly speaking, we have not yet obtained an analytic
infrared fixed point of the exact renormalization group
equations: the evolutions would vanish identically for k →
0 only for ḡ = 0. However, with ḡ ∼ 10−12 for k < kc

we are so close to this fixed point that the tiny deviation
plays no role for all practically purposes. (Still, the coupled
system of exact renormalization group equations (3.13),
(3.14) and (3.16) is so complicated that we did not manage
to prove that analytically ḡ(k) → 0 for k → 0).

It may be helpful to get some feeling for the critical
scale kc where the sudden changes in the evolutions occur.
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Fig. 5. `n(λ) versus t = −log(k2/Λ2)

In (2.28) in Sect. 2 we have introduced a scale M = m/
√

h,
which describes the exponential decay of the correlators of
two field strengths Fµν and thus has some physical mean-
ing. For the ratio kc/M we actually obtain, independently
of the initial values of ḡ and λ,

kc/M ∼ 10−1. (3.19)

Let us now interpret our results in terms of the effective
action Γ (A, H) in the form of (2.9). We have to keep
in mind that this truncation constitutes both a low en-
ergy approximation (in the sense that higher derivatives
or higher powers of the momenta have been neglected)
and a weak field approximation, since higher powers of
Fµν and Hµν have been omitted.

First, the fact that the reduced gauge coupling ḡ prac-
tically vanishes turns the action into a free quadratic ac-
tion of N abelian gauge fields Aa

µ and N antisymmetric
tensor fields Ha

µν . This justifies a posteriori the abelian
projection, which is required in order to make the dual-
ity transformation (2.18) feasible, and the omission of the
Schwinger strings during the calculation of the correlator
of two field strengths in (2.21).

Second, we have introduced two physical dimensionful
parameters in Sect. 2: Λc = m/

√
β characterizing the 1/p4

behaviour of the gluon propagator, and M = m/
√

h char-
acterizing the exponential decay of the correlator of two
field strengths. Although the final results of the parame-
ters m, h, and β for k < kc depend strongly on the initial
value of the gauge coupling g0, we always find h ∼ β and
hence Λc ∼ M , and a dependence of Λc and M on the bare
gauge coupling g0 and the starting point Λ (which plays
implicitly the role of an ultraviolet cutoff) of the form

Λ2
c ∼ M2 ∼ Λ2 e−(16π2/11g2

0) (1 + O(g2
0)
)

(3.20)

as it should be.
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Next we consider the possible definition of a physical
gauge coupling in (2.13), gphys = ḡ/

√
Zeff (describing,

e.g., the low energy behaviour of a correlator of two static
colored sources due to dressed one gluon exchange, cf. the
second of [13]). Both ḡ and Zeff are tiny for k < kc, but
to our surprise we find that also the ratio coresponding
to gphys is very small (∼ 10−4). This does not imply that
Yang Mills theories are free theories, but rather that a mo-
mentum dependent gauge coupling α(q2) tends to zero for
q2 → 0 (remember that we have neglected higher powers
of derivatives in our action). Actually a similar result has
been recently found on the lattice [19], and it coincides
again with the descriptions of confinement based on ef-
fective abelian models as the dual Higgs model in [4], the
“confining string theory” based on compact QED (with
monopoles) in [5], and the gaussian approximation to field
strength correlators in [6].

4 Discussion

In this paper we have made progress in the description of
Yang Mills theories at low energies in terms of an effective
action, which contains both gluons and an auxiliary field
for the field strength as local fields. It has been known
before that, for Zeff → 0, this action describes a 1/p4 be-
haviour of the gluon propagator and, at the same time, its
abelian projection allows for an explicit duality transfor-
mation relating it to a dual abelian Higgs model describing
the condensation of monopoles.

Here we have shown that it also allows for the compu-
tation of the correlator of two field strengths; the result
(2.27), however, has already been obtained before on the
basis of the dual Higgs model [8] and the confining string
theory [9].

Furthermore we have reconsidered the computation of
the corresponding effective action within the Wilsonian
exact renormalization group approach. We have included
a higher dimensional operator in the ghost sector, which is
responsible for the running of the reduced gauge coupling
ḡ via the Slavnov-Taylor identities. (The considered oper-
ator is actually the only one to this order in Fµν consistent
with the Slavnov-Taylor identities, if one requires that the
BRST variation of the gluon field is still a total covariant
derivative.) We find that now the Landau singularity in
the running gauge coupling disappears; on the contrary,
the running gauge coupling becomes tiny at small scales.
Clearly, the sudden jump of the running coupling at the
critical scale kc resembles a phase transition; it is not quite
clear, however, whether the same phenomenon would also
appear as a function of the temperature.

Many properties of the resulting quasi-abelian effective
action (always at low momenta, i.e. to lowest order in a
derivative expansion) have already been discussed at the
end of Sect. 3. Let us add a final point, which is due to
the smallness of Zeff = Z − n2/m2: for Zeff → 0 the
first three terms ∼ F 2, F · H and H2 in Γ (A, H) of (2.9)
become a perfect square (Z/4)(F −mH/

√
Z)2. Then, due

to the vanishing of ḡ, a field redefinition of the form H →
H ′ = H +

√
ZF/m makes Γ (A, H ′) nearly independent

of F or the gauge fields A: the term ∼ h involving ∂µH̃µν

(for ḡ = 0) is invariant under this redefinition of H due
to the Bianchi identity, only in the term ∼ β expressions
of the form ∂µFµν appear. Apart from this term ∼ β the
resulting action Γ (H ′) has then the simple form

Γ (H ′) =
m2

4
(Hµν)2 +

h

2

(
∂µ H̃µν

)2
(4.1)

which coincides with the weak field limit of the action of
the universal “confining string theory” in [5], where the
antisymmetric tensor field couples to the surface bounded
by the Wilson loop like the field strength.

Clearly the relevance of the term ∼ β has to be better
understood; leaving it aside, a coherent picture emerges:
in [5] the action (4.1) is claimed to be universal in the
sense that it does not depend on details (as the gauge
group) of the confining gauge theory under consideration.
Here we have obtained it from the integration of the Wilso-
nian exact renormalization group equations in the infrared
regime, which should also be described by universality
classes.

However, within the present approach it is straight-
forward to include higher derivative terms or momentum
dependent couplings in the effective action (as, e.g., in
the second of [13]); this allows to recover the perturbative
behaviour of the Green functions at large momenta. The
approach is thus quite unique in allowing for a coherent
description of the effective action both in the perturba-
tive and non-perturbative regimes. If our results, in par-
ticular the infrared limit in the form of the action (4.1),
can be confirmed by including higher dimensional oper-
ators in the effective action, a quantitative treatment of
the non-perturbative regime within an expansion in pow-
ers of derivatives for a given Yang Mills theory seems to
be within reach.
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